Engineered isopeptide bond stabilized fibrin inspired nanoscale peptide based sealants for efficient blood clotting

设计的异肽键稳定的纤维蛋白启发纳米级肽基密封剂可实现高效血液凝固

阅读:16
作者:Snehasish Ghosh, Sanchita Mukherjee, Chiranjit Dutta, Kasturee Chakraborty, Paramita Gayen, Somnath Jan, Dhananjay Bhattacharyya, Rituparna Sinha Roy

Abstract

Designing biologically inspired nanoscale molecular assembly with desired functionality is a challenging endeavour. Here we report the designing of fibrin-inspired nanostructured peptide based sealants which facilitate remarkably fast entrapping of blood corpuscles (~28 seconds) in contrast to fibrin (~56 seconds). Our engineered sealants are stabilized by lysine-aspartate ionic interactions and also by Nε(γ-glutamyl) lysine isopeptide bond mediated covalent interaction. Each sealant is formed by two peptides having complementary charges to promote lysine-aspartate ionic interactions and designed isopeptide bond mediated interactions. Computational analysis reveals the isopeptide bond mediated energetically favourable peptide assemblies in sealants 1-3. Our designed sealants 2 and 3 mimic fibrin-mediated clot formation mechanism in presence of transglutaminase enzyme and blood corpuscles. These fibrin-inspired peptides assemble to form sealants having superior hemostatic activities than fibrin. Designed sealants feature mechanical properties, biocompatibility, biodegradability and high adhesive strength. Such nature-inspired robust sealants might be potentially translated into clinics for facilitating efficient blood clotting to handle traumatic coagulopathy and impaired blood clotting.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。