Characterization and Proteomic Profiling of Hepatocyte-like Cells Derived from Human Wharton's Jelly Mesenchymal Stromal Cells: De Novo Expression of Liver-Specific Enzymes

人类华通氏胶质间充质基质细胞衍生的肝细胞样细胞的表征和蛋白质组学分析:肝脏特异性酶的从头表达

阅读:7
作者:Melania Lo Iacono, Simona Corrao, Giusi Alberti, Giandomenico Amico, Francesca Timoneri, Eleonora Russo, Annamaria Cucina, Sergio Indelicato, Francesca Rappa, Tiziana Corsello, Salvatore Saieva, Antonino Di Stefano, Francesca Di Gaudio, Pier Giulio Conaldi, Giampiero La Rocca

Abstract

End-stage liver disease (ESLD), affecting millions worldwide, represents a challenging issue for clinical research and global public health. Liver transplantation is the gold standard therapeutic approach but shows some drawbacks. Hepatocyte transplantation could be a reliable alternative for patient treatment. Mesenchymal stromal cells derived from Wharton's jelly of the umbilical cord (WJ-MSCs) can differentiate into hepatocyte-like cells (HLCs) and show immunomodulatory functions. Due to the increasing demand for fully characterized cell therapy vehicles warranting both the safety and efficacy of treatments, in this work, we extensively characterized WJ-MSCs before and after the application of a hepatocyte-directed differentiation protocol. HLCs exhibited a morphology resembling that of hepatocytes, expressed early and late hepatic markers (α-fetoprotein, albumin, CK18, HNF4-α), and acquired hepatic functions (glycogen synthesis, xenobiotics detoxification), as also revealed by the shotgun proteomics approach. HLCs maintained the same pattern of immunomodulatory molecule expression and mesenchymal markers, other than displaying specific enzymes, suggesting these cells as promising candidates for cellular therapy of ESLD. Our work shed new light on the basic biology of HLCs, suggesting new therapeutic approaches to treat ESLD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。