Mechanical compressive forces increase PI3K output signaling in breast and pancreatic cancer cells

机械压缩力增加乳腺癌和胰腺癌细胞中的 PI3K 输出信号

阅读:2
作者:Mickaël Di-Luoffo, Céline Schmitter, Emma C Barrere, Nicole Therville, Maria Chaouki, Romina D'Angelo, Silvia Arcucci, Benoit Thibault, Morgan Delarue, Julie Guillermet-Guibert

Abstract

Mechanical stresses, including compression, arise during cancer progression. In solid cancer, especially breast and pancreatic cancers, the rapid tumor growth and the environment remodeling explain their high intensity of compressive forces. However, the sensitivity of compressed cells to targeted therapies remains poorly known. In breast and pancreatic cancer cells, pharmacological PI3K inactivation decreased cell number and induced apoptosis. These effects were accentuated when we applied 2D compression forces in mechanically responsive cells. Compression selectively induced the overexpression of PI3K isoforms and PI3K/AKT pathway activation. Furthermore, transcriptional effects of PI3K inhibition and compression converged to control the expression of an autophagy regulator, GABARAP, whose level was inversely associated with PI3K inhibitor sensitivity under compression. Compression alone blocked autophagy flux in all tested cells, whereas inactivation of basal PI3K activity restored autophagy flux only in mechanically non-responsive compressed cells. This study provides direct evidence for the role of the PI3K/AKT pathway in compression-induced mechanotransduction. PI3K inhibition promotes apoptosis or autophagy, explaining PI3K importance to control cancer cell survival under compression.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。