Insulin acts through FOXO3a to activate transcription of plasminogen activator inhibitor type 1

胰岛素通过 FOXO3a 激活纤溶酶原激活剂抑制剂 1 型的转录

阅读:5
作者:Ushma R Jag, Jiri Zavadil, Frederick M Stanley

Abstract

Plasminogen activator inhibitor-1 (PAI-1) is an important regulator of fibrinolysis. PAI-1 levels are elevated in type 2 diabetes, and this elevation correlates with macro- and microvascular complications of diabetes. However, the mechanistic link between insulin and up-regulation of PAI-1 is unclear. Here we demonstrate that overexpression of Forkhead-related transcription factor (Fox)O1, FoxO3a, and FoxC1 augment insulin's ability to activate the PAI-1 promoter. In addition, insulin treatment promotes the phosphorylation of nuclear and cytoplasmic Fox03a and an increase of cytoplasmic Fox03a. In contrast, insulin treatment led to the accumulation of phospho-Fox01 only in the cytoplasm. Furthermore, insulin also increased the ability of chimeric LexA-FoxO1, LexA-FoxO3a, and LexA-FoxC1 proteins to increase the activity of a LexA reporter, suggesting that the effect of insulin on FoxO3a was direct. Using small interfering RNA to specifically deplete each of the Fox transcription factors tested, we demonstrate that only reduction of FoxO3a inhibits insulin-increased PAI-1-Luc expression and PAI-1 mRNA accumulation. Finally, chromatin immunoprecipitation assays confirm the presence of FoxO3a on the PAI-1 promoter. These results suggest that FoxO3a mediates insulin-increased PAI-1 gene expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。