Monitoring of over-the-counter (OTC) and COVID-19 treatment drugs complement wastewater surveillance of SARS-CoV-2

非处方药 (OTC) 和 COVID-19 治疗药物的监测补充了 SARS-CoV-2 废水监测

阅读:11
作者:Cheng-Shiuan Lee, Mian Wang, Deepak Nanjappa, Yi-Ta Lu, Jaymie Meliker, Sean Clouston, Christopher J Gobler, Arjun K Venkatesan

Background

The application of wastewater-based epidemiology to track the outbreak and prevalence of coronavirus disease (COVID-19) in communities has been tested and validated by several researchers across the globe. However, the RNA-based surveillance has its inherent limitations and uncertainties.

Methods

Wastewater samples (n = 183) were collected from the largest wastewater treatment facility in Suffolk County, NY, USA and analyzed for COVID-19 treatment drugs (remdesivir, chloroquine, and hydroxychloroquine (HCQ)) and their human metabolites. We additionally monitored 26 pharmaceuticals including common over-the-counter (OTC) drugs. Lastly, we developed a Bayesian model that uses viral RNA, COVID-19 treatment drugs, and pharmaceuticals data to predict the confirmed COVID-19 cases within the catchment area.

Objective

This study aims to complement the ongoing wastewater surveillance efforts by analyzing other chemical biomarkers in wastewater to help assess community response (hospitalization and treatment) during the pandemic (2020-2021).

Results

The viral RNA levels in wastewater tracked the actual COVID-19 case numbers well as expected. COVID-19 treatment drugs were detected with varying frequency (9-100%) partly due to their instability in wastewater. We observed a significant correlation (R = 0.30, p < 0.01) between the SARS-CoV-2 genes and desethylhydroxychloroquine (DHCQ, metabolite of HCQ). Remdesivir levels peaked immediately after the Emergency Use Authorization approved by the FDA. Although, 13 out of 26 pharmaceuticals assessed were consistently detected (DF = 100%, n = 111), only acetaminophen was significantly correlated with viral loads, especially when the Omicron variant was dominant. The Bayesian models were capable of reproducing the temporal trend of the confirmed cases. Impact: In this study, for the first time, we measured COVID-19 treatment and pharmaceutical drugs and their metabolites in wastewater to complement ongoing COVID-19 viral RNA surveillance efforts. Our results highlighted that, although the COVID-19 treatment drugs were not very stable in wastewater, their detection matched with usage trends in the community. Acetaminophen, an OTC drug, was significantly correlated with viral loads and confirmed cases, especially when the Omicron variant was dominant. A Bayesian model was developed which could predict COVID-19 cases more accurately when incorporating other drugs data along with viral RNA levels in wastewater.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。