Uterine glycogen metabolism in mink during estrus, embryonic diapause and pregnancy

水貂发情、胚胎休眠和妊娠期间子宫糖原代谢

阅读:5
作者:Matthew Dean, Jason Hunt, Lisa McDougall, Jack Rose

Abstract

We have determined uterine glycogen content, metabolizing enzyme expression and activity in the mink, a species that exhibits obligatory embryonic diapause, resulting in delayed implantation. Gross uterine glycogen concentrations were highest in estrus, decreased 50% by diapause and 90% in pregnancy (P ≤ 0.05). Endometrial glycogen deposits, which localized primarily to glandular and luminal epithelia, decreased 99% between estrus and diapause (P ≤ 0.05) and were nearly undetectable in pregnancy. Glycogen synthase and phosphorylase proteins were most abundant in the glandular epithelia. Glycogen phosphorylase activity (total) in uterine homogenates was higher during estrus and diapause, than pregnancy. While glycogen phosphorylase protein was detected during estrus and diapause, glycogen synthase was almost undetectable after estrus, which probably contributed to a higher glycogenolysis/glycogenesis ratio during diapause. Uterine glucose-6-phosphatase 3 gene expression was greater during diapause, when compared to estrus (P ≤ 0.05) and supports the hypothesis that glucose-6-phosphate resulting from phosphorylase activity was dephosphorylated in preparation for export into the uterine lumen. The relatively high amount of hexokinase-1 protein detected in the luminal epithelia during estrus and diapause may have contributed to glucose trapping after endometrial glycogen reserves were depleted. Collectively, our findings suggest to us that endometrial glycogen reserves may be an important source of energy, supporting uterine and conceptus metabolism up to the diapausing blastocyst stage. As a result, the size of uterine glycogen reserves accumulated prior to mating may in part, determine the number of embryos that survive to the blastocyst stage, and ultimately litter size.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。