Heat shock protein 27 overexpression mitigates cytokine-induced islet apoptosis and streptozotocin-induced diabetes

热休克蛋白 27 过表达减轻细胞因子诱导的胰岛细胞凋亡和链脲佐菌素诱导的糖尿病

阅读:9
作者:Tiane Dai, Mina Patel-Chamberlin, Rama Natarajan, Ivan Todorov, Jun Ma, Janine LaPage, Lynetta Phillips, Cynthia C Nast, Diana Becerra, Peter Chuang, Lili Tong, Jacqueline de Belleroche, Dominic J Wells, Ying Wang, Sharon G Adler

Abstract

Beta-cell apoptosis occurs in diabetes mellitus (DM). Heat shock protein (HSP) 27 (human homolog of rodent HSP25) mitigates stress-induced apoptosis but has not been studied in beta-cells. We tested whether HSP27 overexpression attenuates streptozotocin (SZ)-induced DM in vivo and cytokine-induced islet apoptosis in vitro. DM was ascertained by ip glucose tolerance testing, and fasting serum insulin/glucose was measured. Pancreas was stained for insulin, HSP27, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling, and insulin content was measured. HSP25/27 was measured by immunoblotting, isoelectric focusing, and RT-PCR. Islet HSP25/27 oligomerization and inhibitory kappaB protein kinase gamma (nuclear factor kappaB essential modulator) binding were assessed by coimmunoprecipitation. HSP27 transgene (TG) in pancreas localized predominantly in beta-cells. Baseline pancreatic insulin levels in wild-type (WT) and HSP27TG mice were similar, but lower in WT than HSP27TG after SZ (P < 0.01). Intraperitoneal glucose tolerance testing confirmed protection from SZ-DM in HSP27TG. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and inducible nitric oxide synthase staining were increased in WT vs. HSP27TG islets (P < 0.05) after SZ. Caspase-3 activity was lower in islets from HSP27TG vs. WT mice after cytokine stress in vitro (P < 0.05). There was more HSP25 plus 27 protein from HSP27TG islets than HSP25 from WT (P < 0.01). HSP25 protein but not mRNA was increased in HSP27TG mice. Isoelectric focusing showed similar relative HSP phosphorylation in HSP27TG and WT (P > 0.05). HSP27 bound native HSP25 in TG islets; both bound to inhibitory kappaB protein kinase gamma (nuclear factor kappaB essential modulator). These data show islet protection by HSP27 by mitigation of apoptosis, possibly through nuclear factor kappaB regulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。