Machine learning-based estimation of spatial gene expression pattern during ESC-derived retinal organoid development

基于机器学习的 ESC 衍生视网膜类器官发育过程中空间基因表达模式估计

阅读:5
作者:Yuki Fujimura, Itsuki Sakai, Itsuki Shioka, Nozomu Takata, Atsushi Hashimoto, Takuya Funatomi, Satoru Okuda

Abstract

Organoids, which can reproduce the complex tissue structures found in embryos, are revolutionizing basic research and regenerative medicine. In order to use organoids for research and medicine, it is necessary to assess the composition and arrangement of cell types within the organoid, i.e., spatial gene expression. However, current methods are invasive and require gene editing and immunostaining. In this study, we developed a non-invasive estimation method of spatial gene expression patterns using machine learning. A deep learning model with an encoder-decoder architecture was trained on paired datasets of phase-contrast and fluorescence images, and was applied to a retinal organoid derived from mouse embryonic stem cells, focusing on the master gene Rax (also called Rx), crucial for eye field development. This method successfully estimated spatially plausible fluorescent patterns with appropriate intensities, enabling the non-invasive, quantitative estimation of spatial gene expression patterns within each tissue. Thus, this method could lead to new avenues for evaluating spatial gene expression patterns across a wide range of biology and medicine fields.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。