Rapid increase in plasma membrane chloride permeability during wound resealing in starfish oocytes

海星卵母细胞伤口重新愈合过程中质膜氯化物通透性快速增加

阅读:12
作者:Alan Fein, Mark Terasaki

Abstract

Plasma membrane wound repair is an important but poorly understood process. We used femtosecond pulses from a Ti-Sapphire laser to make multiphoton excitation-induced disruptions of the plasma membrane while monitoring the membrane potential and resistance. We observed two types of wounds that depolarized the plasma membrane. At threshold light levels, the membrane potential and resistance returned to prewound values within seconds; these wounds were not easily observed by light microscopy and resealed in the absence of extracellular Ca(2+). Higher light intensities create wounds that are easily visible by light microscopy and require extracellular Ca(2+) to reseal. Within a few seconds the membrane resistance is approximately 100-fold lower, while the membrane potential has depolarized from -80 to -30 mV and is now sensitive to the Cl(-) concentration but not to that of Na(+), K(+), or H(+). We suggest that the chloride sensitivity of the membrane potential, after wound resealing, is due to the fusion of chloride-permeable intracellular membranes with the plasma membrane.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。