Extensive uptake of α-synuclein oligomers in astrocytes results in sustained intracellular deposits and mitochondrial damage

星形胶质细胞大量吸收 α-突触核蛋白寡聚体,导致持续的细胞内沉积和线粒体损伤

阅读:4
作者:Veronica Lindström, Gabriel Gustafsson, Laurie H Sanders, Evan H Howlett, Jessica Sigvardson, Alex Kasrayan, Martin Ingelsson, Joakim Bergström, Anna Erlandsson

Abstract

The presence of Lewy bodies, mainly consisting of aggregated α-synuclein, is a pathological hallmark of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). The α-synuclein inclusions are predominantly found in neurons, but also appear frequently in astrocytes. However, the pathological significance of α-synuclein inclusions in astrocytes and the capacity of glial cells to clear toxic α-synuclein species remain unknown. In the present study we investigated uptake, degradation and toxic effects of oligomeric α-synuclein in a co-culture system of primary neurons, astrocytes and oligodendrocytes. Alpha-synuclein oligomers were found to co-localize with the glial cells and the astrocytes were found to internalize particularly large amounts of the protein. Following ingestion, the astrocytes started to degrade the oligomers via the lysosomal pathway but, due to incomplete digestion, large intracellular deposits remained. Moreover, the astrocytes displayed mitochondrial abnormalities. Taken together, our data indicate that astrocytes play an important role in the clearance of toxic α-synuclein species from the extracellular space. However, when their degrading capacity is overburdened, α-synuclein deposits can persist and result in detrimental cellular processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。