Valproic acid regulates Ang II-induced pericyte-myofibroblast trans-differentiation via MAPK/ERK pathway

丙戊酸通过 MAPK/ERK 通路调节血管紧张素 II 诱导的周细胞-肌成纤维细胞转分化

阅读:8
作者:Yan Zhang, Feng Gao, Yuan Tang, Jinwen Xiao, Chuanchuan Li, Yu Ouyang, Yuemei Hou

Abstract

Myocardial fibrosis (MF) plays an important part in cardiovascular diseases. The main cytological characteristics of MF is the increased number of myofibroblasts, which have multiple sources such as EMT, EndMT, myeloid progenitors, monocytes, and fibrocytes. Recent data showed that pericytes may represent a major source of myofibroblasts in kidney fibrosis. Valproic acid (VPA) is a kind of short-chain fatty acid. It was reported in recent studies that VPA regulates gene expression and influences various signal pathways. HDACs inhibitors can hinder the growth of tumor cells and differentiation of stem cells. And little is known about the effects of HDACs inhibitors on myofibroblasts transdiffererntiaton. This study focused on the role of HDACs in pericyte-myofibroblast trans-differentiation and how HDACs inhibitor VPA influenced proliferation, migration, viability and myofibroblast trans-differentiation of pericytes for the first time. Rat cardiac fibrosis model was induced by Ang II. Immunohistochemistry was employed to examine cardiac fibrosis and flow cytometry was used to analyze whether inflammatory cells involve VPA-induced trans-differentiation. Pericytes proliferation, migration and differentiation to myofibroblasts were performed to examine the role of VPA on pericyte trans-differentiation. Immunoblot and qPCR were applied to identify the signal transduction involving in VPA-induced trans-differentiation. In vivo study showed that HDAC inhibitor VPA blocks cardiac fibrosis, and inflammation inhibition was not involved in this process. VPA treatment inhibited Ang II pericyte proliferation, migration and transdifferentiation to myofibroblast. Furthermore, the inhibition of α-SMA expression by VPA was related to reduce phosphorylation of ERK, and a pharmacological inhibitor of MEK suppressed Ang II-induced α-SMA expression. HDAC4 knockdown resulted in inhibiting Ang II-mediated α-SMA expression as well as the phosphorylation of ERK. Moreover, the inhibitors of protein phosphatase 2A and 1 (PP2A and PP1) restored the Ang II-stimulated α-SMA expression from the inhibitory effect of VPA. Together, the current data indicate that the differentiation of pericytes to myofibroblasts is HDAC4 dependent and requires phosphorylation of ERK.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。