The Effect of Repeated Whole-Body Cryotherapy on Sirt1 and Sirt3 Concentrations and Oxidative Status in Older and Young Men Performing Different Levels of Physical Activity

重复全身冷冻疗法对不同体力活动水平的老年和年轻男性 Sirt1 和 Sirt3 浓度及氧化状态的影响

阅读:6
作者:Gabriela Wojciak, Jadwiga Szymura, Zbigniew Szygula, Joanna Gradek, Magdalena Wiecek

Background

The activity of antioxidant enzymes and sirtuins (Sirt) decreases along with age, which is counteracted by aerobic training. Sirtuins increase antioxidant defence. Whole-body cryotherapy (WBC) increases total antioxidant capacity (TAC) in young men. The

Conclusions

Cryogenic temperatures increase blood levels of Sirt1 and Sirt3 and systemic antioxidant defence in men, but the effect is dependent on age, level of performed physical activity and the number of applied treatments.

Methods

The study involved 40 males. In each group, there were 10 non-training older and young men (60 NTR and 20 NTR), and 10 older and young long-distance runners (60 TR, 20 TR). During an 8-week period, participants underwent 24 WBC treatments (3 min -130 °C), which were performed three times a week (Monday, Wednesday, Friday). The concentrations of Sirt1, Sirt3, TAC, total oxidative status and the activity of superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) in the blood were determined before 1 WBC and after 1 WBC, 12 WBC and 24 WBC.

Results

After 1 WBC, the activity of GPx and the concentration of Sirt1 and TAC in 60 TR and TAC in 60 NTR increased. After 12 WBC, the level of Sirt1 in 20 NTR and SOD in 20 TR increased. After 24 WBC, the level of Sirt1 increased in 60 TR and in 20 NTR, Sirt3 in 60 TR and SOD in 20 TR. Conclusions: Cryogenic temperatures increase blood levels of Sirt1 and Sirt3 and systemic antioxidant defence in men, but the effect is dependent on age, level of performed physical activity and the number of applied treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。