Conclusions
DZ7487 demonstrated potent anti-RSV replication effect both in vitro and in vivo assays. It has the desired drug-like physical properties to be an effective orally available anti-RSV replication drug with broad spectrum.
Methods
HEp-2 cells were infected by RSV A and B. Antiviral activities were assessed by in vitro cytopathic effect assay (CPE) and Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). DZ7487 antiviral effects in lower airway cells were evaluated in A549 and human small airway epithelial cells (SAEC) cells. DZ7487 induced RSV A2 escape mutations were selected through continuous culture with increasing DZ7487 concentrations in the culture medium. Resistant mutations were identified by next generation sequencing and confirmed by recombinant RSV CPE assays. RSV infection models in both BALB/c mice and cotton rats were used to evaluate DZ7487 in vivo antiviral effects.
Results
DZ7487 potently inhibited viral replication of all clinical isolates of both RSVA and B subtypes. In lower airway cells, DZ7487 showed superior efficacy than the nucleoside analog ALS-8112. Acquired resistant mutation was predominantly restricted at the RdRp domain resulting asparagine to threonine mutation (N363T) of the L protein. This finding is consistent with DZ7487's presumed binding mode. DZ7487 was well tolerated in animal models. Unlike fusion inhibitors, which can only prevent viral infection, DZ7487 potently inhibited RSV replication before and after RSV infection in vitro and in vivo. Conclusions: DZ7487 demonstrated potent anti-RSV replication effect both in vitro and in vivo assays. It has the desired drug-like physical properties to be an effective orally available anti-RSV replication drug with broad spectrum.
