Dysregulation of RAS proteostasis by autosomal-dominant LZTR1 mutation induces Noonan syndrome-like phenotypes in mice

常染色体显性 LZTR1 突变导致 RAS 蛋白稳态失调,在小鼠中诱发 Noonan 综合征样表型

阅读:10
作者:Taiki Abe, Kaho Morisaki, Tetsuya Niihori, Miho Terao, Shuji Takada, Yoko Aoki

Abstract

Leucine-zipper-like posttranslational regulator 1 (LZTR1) is a member of the BTB-Kelch superfamily, which regulates the RAS proteostasis. Autosomal dominant (AD) mutations in LZTR1 have been identified in patients with Noonan syndrome (NS), a congenital anomaly syndrome. However, it remains unclear whether LZTR1 AD mutations regulate the proteostasis of the RAS subfamily molecules or cause NS-like phenotypes in vivo. To elucidate the pathogenesis of LZTR1 mutations, we generated 2 LZTR1 mutation knock-in mice (Lztr1G245R/+ and Lztr1R409C/+), which correspond to the human p.G248R and p.R412C mutations, respectively. LZTR1-mutant male mice exhibit low birth weight, distinctive facial features, and cardiac hypertrophy. Cardiomyocyte size and the expression of RAS subfamily members, including MRAS and RIT1, were significantly increased in the left ventricles (LVs) of mutant male mice. LZTR1 AD mutants did not interact with RIT1 and functioned as dominant-negative forms of WT LZTR1. Multi-omics analysis revealed that the mitogen-activated protein kinase (MAPK) signaling pathway was activated in the LVs of mutant mice. Treatment with the MEK inhibitor trametinib ameliorated cardiac hypertrophy in mutant male mice. These results suggest that the MEK/ERK pathway is a therapeutic target for the NS-like phenotype resulting from dysfunction of RAS proteostasis by LZTR1 AD mutations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。