Brain-specific Wt1 deletion leads to depressive-like behaviors in mice via the recruitment of Tet2 to modulate Epo expression

大脑特异性的 Wt1 缺失通过募集 Tet2 来调节 Epo 表达,导致小鼠出现抑郁样行为

阅读:3
作者:Fen Ji, Wenwen Wang, Chao Feng, Fei Gao, Jianwei Jiao

Abstract

Major depressive disorder (MDD) is the most common psychiatric disease worldwide. The precise molecular and cellular mechanisms underlying this disorder remain largely unknown. Wilms' tumor 1 (Wt1), a transcription factor, plays critical roles in cancer and organ development. Importantly, deletion of the 11p13 region that contains the WT1 gene is a major cause of WARG syndrome (Wilms' tumor, aniridia, genitourinary anomalies, and mental retardation), which is characterized by psychiatric disease, including depression. However, the roles and mechanisms of WT1 in embryonic neurogenesis and psychiatric disease remain unclear. Here, we demonstrate that the brain-specific deletion of Wt1 results in abnormal cell distribution during embryonic neurogenesis, which is accompanied by enhanced proliferation of neural progenitors and reduced neuronal differentiation. Moreover, neurons exhibit abnormal morphology during cortical development following Wt1 ablation. Furthermore, Wt1cKO mice exhibit depressive-like behaviors, including immobility, despair, and anhedonia. Mechanistically, Wt1 recruits Tet2 to the promoter of erythropoietin (Epo), which results in enhanced 5-hydroxymethylcytosine (5hmC) levels and the promotion of Epo expression. Either Epo plasmid electroporation or Epo protein injection can partially restore the deficiency caused by Wt1 deletion. Importantly, administration of Epo to both embryos and adults can ameliorate the depressive-like behavior of Wt1cKO mice. In addition, WT1 plays a similar role in human neural progenitor cells (hNPCs) proliferation and differentiation. Taken together, our findings reveal the critical role and regulatory mechanism of Wt1 in embryonic neurogenesis and behavioral modulation, which could contribute to the understanding of MDD etiology and therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。