Comparative Proteome Analysis Indicates The Divergence between The Head and Tail Regeneration in Planarian

比较蛋白质组分析表明涡虫头部和尾部再生存在差异

阅读:5
作者:Xiaoguang Chen, Yumei Liu, Xuemin Zhu, Qiongxia Lv

Conclusion

Proteomic profiles of head and tail regeneration identified a total of 516 differential expressed proteins (DEPs) and showed a great difference in quantity and fold changes of proteome profiles between the two scenarios. Briefly, out of the 516 DEPs, 314 were identified to be specific for anterior regeneration, while 165 were specific for posterior regeneration. Bioinformatics analysis showed a wide discrepancy in biological activities between two regenerative processes; especially, differentiation and development and signal transduction in head regeneration were much more complex than that in tail regeneration. Protein functional analysis combined with protein-protein interaction (PPI) analysis showed a significant contribution of both Wnt and BMP signaling pathways to head regeneration not but tail regeneration. Additionally, several novel proteins showed completely opposite expression between head and tail regeneration.

Methods

In this experimental study, we profiled the dynamic proteome of regenerating head and tail to reveal the differences and similarities between different regenerating fragments using 2-DE combined with MALDITOF/ TOF MS.

Objective

Even a small fragment from the body of planarian can regenerate an entire animal, implying that the different fragments from this flatworm eventually reach the same solution. In this study, our aim was to reveal the differences and similarities in mechanisms between different regenerating fragments from this worm. Materials and

Results

Proteomic profiles of head and tail regeneration identified a total of 516 differential expressed proteins (DEPs) and showed a great difference in quantity and fold changes of proteome profiles between the two scenarios. Briefly, out of the 516 DEPs, 314 were identified to be specific for anterior regeneration, while 165 were specific for posterior regeneration. Bioinformatics analysis showed a wide discrepancy in biological activities between two regenerative processes; especially, differentiation and development and signal transduction in head regeneration were much more complex than that in tail regeneration. Protein functional analysis combined with protein-protein interaction (PPI) analysis showed a significant contribution of both Wnt and BMP signaling pathways to head regeneration not but tail regeneration. Additionally, several novel proteins showed completely opposite expression between head and tail regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。