Textured Asymmetric Membrane Electrode Assemblies of Piezoelectric Phosphorene and Ti3C2Tx MXene Heterostructures for Enhanced Electrochemical Stability and Kinetics in LIBs

压电磷烯和 Ti3C2Tx MXene 异质结构的纹理非对称膜电极组件可增强 LIBs 中的电化学稳定性和动力学

阅读:5
作者:Yihui Li #, Juan Xie #, Ruofei Wang, Shugang Min, Zewen Xu, Yangjian Ding, Pengcheng Su, Xingmin Zhang, Liyu Wei, Jing-Feng Li, Zhaoqiang Chu, Jingyu Sun, Cheng Huang1

Abstract

Black phosphorus with a superior theoretical capacity (2596 mAh g-1) and high conductivity is regarded as one of the powerful candidates for lithium-ion battery (LIB) anode materials, whereas the severe volume expansion and sluggish kinetics still impede its applications in LIBs. By contrast, the exfoliated two-dimensional phosphorene owns negligible volume variation, and its intrinsic piezoelectricity is considered to be beneficial to the Li-ion transfer kinetics, while its positive influence has not been discussed yet. Herein, a phosphorene/MXene heterostructure-textured nanopiezocomposite is proposed with even phosphorene distribution and enhanced piezo-electrochemical coupling as an applicable free-standing asymmetric membrane electrode beyond the skin effect for enhanced Li-ion storage. The experimental and simulation analysis reveals that the embedded phosphorene nanosheets not only provide abundant active sites for Li-ions, but also endow the nanocomposite with favorable piezoelectricity, thus promoting the Li-ion transfer kinetics by generating the piezoelectric field serving as an extra accelerator. By waltzing with the MXene framework, the optimized electrode exhibits enhanced kinetics and stability, achieving stable cycling performances for 1,000 cycles at 2 A g-1, and delivering a high reversible capacity of 524 mAh g-1 at - 20 ℃, indicating the positive influence of the structural merits of self-assembled nanopiezocomposites on promoting stability and kinetics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。