Synthesis, phloem mobility and induced plant resistance of synthetic salicylic acid amino acid or glucose conjugates

合成水杨酸氨基酸或葡萄糖结合物的合成、韧皮部移动及诱导植物抗性

阅读:10
作者:Benoit Guichard #, Hanxiang Wu #, Sylvain La Camera, Richa Hu, Cécile Marivingt-Mounir, Jean-François Chollet

Background

The growing demand for food, combined with a strong social expectation for a diet produced with fewer conventional agrochemical inputs, has led to the development of new alternatives in plant protection worldwide. Among different possibilities, the stimulation of the plant innate immune system by chemicals represents a novel and promising way. The vectorization strategy of an active ingredient that we previously developed with fungicides can potentially extend to salicylic acid (SA) or its halogenated analogues.

Conclusion

The vectorization of salicylic acid or its halogenated derivatives by coupling them with an α-amino acid can be a promising strategy to stimulate SA-mediated plant defenses responses against pathogens outside the application site. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Results

Using the click chemistry method, six new conjugates combining SA or two mono- or di-halogenated analogues with L-glutamic acid or β-D-glucose via a 1,2,3-triazole nucleus have been synthesized. Conjugate 8a, which is derived from SA and glutamic acid, showed high phloem mobility in the Ricinus model, similar to that of SA alone despite a much higher steric hindrance. In vivo bioassays of the six conjugates against two maize pathogenic fungi Bipolaris maydis and Fusarium graminearum revealed that, unlike SA, the amino acid conjugate 8a with good phloem mobility exerted a protective effect not only locally at the application site, but also in distant stem tissues after foliar application. Moreover, compounds 8a and 8b induced up-regulation of both defense-related genes ZmNPR1 and ZmPR1 similar to their parent compounds upon challenge inoculation with B. maydis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。