Overexpression of miR-223 inhibits foam cell formation by inducing autophagy in vascular smooth muscle cells

miR-223 过表达通过诱导血管平滑肌细胞自噬抑制泡沫细胞形成

阅读:11
作者:Weibin Wu, Zhen Shan, Rui Wang, Guangqi Chang, Mian Wang, Ridong Wu, Zilun Li, Chunxiang Zhang, Wen Li, Shenming Wang

Background

Vascular smooth muscle cells (VSMCs) play an important role in foam cell formation, a hallmark of atherosclerosis obliterans (ASO). We recently demonstrated that miR-223 is significantly upregulated both in atherosclerotic arteries and in the serum sample of ASO patients. However, it is still unknown if miR-223 is implicated in the foam cell formation of VSMCs. The current study aimed to investigate the role of miR-223 in the foam cell formation of VSMCs.

Conclusions

miR-223 overexpression inhibited foam cell formation in VSMCs, at least partially, via inducing autophagy. The IGF-1R/PI3K/Akt signaling pathway may be also involved in this mechanism.

Methods

Artery and serum samples were collected from ASO patients. Human VSMCs were isolated from the normal arteries of healthy donors. For miR-223 overexpression, miR-223 mimic was transfected into VSMCs using Lipofectamine 2000. Foam cell formation was evaluated by lipid accumulation using Oil Red O staining. Luciferase assay was adopted to confirm the target gene of miRNA.

Results

miR-223 was significantly upregulated in both the arteries and serum samples from ASO patients. miR-223 overexpression significantly inhibited the foam cell formation and decreased total intracellular cholesterol levels in VSMCs. miR-223 overexpression induced autophagy of VSMCs. Blocking autophagy by 3-methyladenine or autophagy-related 7 (Atg7) siRNAs attenuated the inhibitory effect of miR-223 overexpression on foam cell formation. Luciferase assay showed that IGF-1R is a direct target of miR-223. miR-223 overexpression reduced protein levels of IGF-1R expression and the phosphorylated form of PI3K and Akt proteins. Conclusions: miR-223 overexpression inhibited foam cell formation in VSMCs, at least partially, via inducing autophagy. The IGF-1R/PI3K/Akt signaling pathway may be also involved in this mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。