Optimization and validation of two multiplex qPCR assays for the rapid detection of microorganisms commonly invading the amniotic cavity

优化和验证两种多重 qPCR 检测方法,用于快速检测常见侵入羊膜腔的微生物

阅读:8
作者:Andrew D Winters, Roberto Romero, Emma Graffice, Nardhy Gomez-Lopez, Eunjung Jung, Tomi Kanninen, Kevin R Theis

Abstract

Microbial invasion of the amniotic cavity (MIAC) leading to infection is strongly associated with adverse pregnancy and neonatal outcomes. Limitations of current diagnostic assays to detect MIAC rapidly and accurately have hindered the ability of obstetricians to identify and treat intra-amniotic infections. We developed, optimized, and validated two multiplex quantitative polymerase chain reaction (qPCR) assays for the simultaneous detection and quantification of microbial taxa commonly associated with MIAC. The first assay allows for the quantification of general bacterial and fungal loads in amniotic fluid and includes a human reference gene to allow for assessing the integrity of clinical samples and the DNA extraction process. The second assay allows for the detection and quantification of four specific bacterial taxa commonly associated with MIAC: Ureaplasma spp., Mycoplasma hominis, Streptococcus agalactiae, and Fusobacterium nucleatum. The qPCR assays were validated by using both microbial isolates and clinical amniotic fluid samples. The assays were further validated by comparing qPCR amplification results to those from the microbial culture and bacterial 16S rRNA gene sequencing of amniotic fluid. Both assays demonstrated high reproducibility and are sensitive and specific to their intended targets. Therefore, these assays represent promising molecular diagnostic tools for the detection of MIAC. Most importantly, these assays may allow for administration of timely and targeted antibiotic interventions to reduce adverse perinatal outcomes attributed to intra-amniotic infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。