Abstract
Microbial invasion of the amniotic cavity (MIAC) leading to infection is strongly associated with adverse pregnancy and neonatal outcomes. Limitations of current diagnostic assays to detect MIAC rapidly and accurately have hindered the ability of obstetricians to identify and treat intra-amniotic infections. We developed, optimized, and validated two multiplex quantitative polymerase chain reaction (qPCR) assays for the simultaneous detection and quantification of microbial taxa commonly associated with MIAC. The first assay allows for the quantification of general bacterial and fungal loads in amniotic fluid and includes a human reference gene to allow for assessing the integrity of clinical samples and the DNA extraction process. The second assay allows for the detection and quantification of four specific bacterial taxa commonly associated with MIAC: Ureaplasma spp., Mycoplasma hominis, Streptococcus agalactiae, and Fusobacterium nucleatum. The qPCR assays were validated by using both microbial isolates and clinical amniotic fluid samples. The assays were further validated by comparing qPCR amplification results to those from the microbial culture and bacterial 16S rRNA gene sequencing of amniotic fluid. Both assays demonstrated high reproducibility and are sensitive and specific to their intended targets. Therefore, these assays represent promising molecular diagnostic tools for the detection of MIAC. Most importantly, these assays may allow for administration of timely and targeted antibiotic interventions to reduce adverse perinatal outcomes attributed to intra-amniotic infections.
