Type 3 deiodinase activation mediated by the Shh/Gli1 axis promotes sepsis-induced metabolic dysregulation in skeletal muscles

Shh/Gli1 轴介导的 3 型脱碘酶激活促进脓毒症引起的骨骼肌代谢失调

阅读:7
作者:Gang Wang, Tao Gao, Yijiang Liu, Jianfeng Duan, Huimin Lu, Anqi Jiang, Yun Xu, Xiaolan Lu, Xiaoyao Li, Yong Wang, Wenkui Yu

Background

Non-thyroidal illness syndrome is commonly observed in critically ill patients, characterized by the inactivation of systemic thyroid hormones (TH), which aggravates metabolic dysfunction. Recent evidence indicates that enhanced TH inactivation is mediated by the reactivation of type 3 deiodinase (Dio3) at the tissue level, culminating in a perturbed local metabolic equilibrium. This study assessed whether targeted inhibition of Dio3 can maintain tissue metabolic homeostasis under septic conditions and explored the mechanism behind Dio3 reactivation.

Conclusions

The suppression of Dio3 restores tissue TH actions, attenuates proteolysis, and ameliorates anabolic resistance in the skeletal muscles of septic rats, thereby improving local metabolic homeostasis. Our results provide insights into the mechanisms of Dio3 reactivation and its critical role in local metabolic alterations induced by sepsis, while also suggesting novel targets aimed at ameliorating tissue-specific metabolic disorders.

Methods

A retrospective clinical study was conducted to investigate the attributes of rT3. The expression of Dio3 was detected by immunoblotting, immunofluorescence, and immunohistochemical staining in tissues extracted from CLP-induced septic rats and human biopsy samples. In addition, the effect of Dio3 inhibition on skeletal muscle metabolism was observed in rats with targeted Dio3 knockdown using an adeno-associated virus. The effectiveness of Sonic hedgehog (Shh) signaling inhibition on systemic TH levels was observed in CLP-induced septic rats receiving cyclopamine. The mechanisms underlying such inhibition were explored using immunoblotting, RNA-seq, and chromatin immunoprecipitation-qPCR assays.

Results

The main product of Dio3, rT3, is strongly associated with organ function. Early sepsis leads to significant upregulation of Dio3 in the skeletal muscles and lung tissues of septic rats. The targeted inhibition of Dio3 in skeletal muscle restores TH responsiveness, prevents fast-to-slow fiber conversion, preserves glucose transporter type 4 functionality, and maintains metabolic balance between protein synthesis and proteolysis, which leads to preserved muscle mass. The reactivation of Dio3 is transcriptionally regulated by the Shh pathway induced by the signal transducer and activator of transcription 3. Conclusions: The suppression of Dio3 restores tissue TH actions, attenuates proteolysis, and ameliorates anabolic resistance in the skeletal muscles of septic rats, thereby improving local metabolic homeostasis. Our results provide insights into the mechanisms of Dio3 reactivation and its critical role in local metabolic alterations induced by sepsis, while also suggesting novel targets aimed at ameliorating tissue-specific metabolic disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。