Nicousamide protects kidney podocyte by inhibiting the TGFβ receptor II phosphorylation and AGE-RAGE signaling

尼古沙胺通过抑制 TGFβ 受体 II 磷酸化和 AGE-RAGE 信号传导保护肾足细胞

阅读:14
作者:Sen Zhang, Dongjie Wang, Nina Xue, Fangfang Lai, Ming Ji, Jing Jin, Xiaoguang Chen

Abstract

Nicousamide, a clinical phase II renal protective new drug, has been demonstrated to have renal protective effect on diabetic nephropathy (DN) by experimental animal model. Its known molecular mechanisms include AGE formation blocking and moderately decreasing the blood pressure. Nicousamide shows potential on attenuating albuminuria, thereby suggests it might have protective effect on podocytes. The aim of present study was to investigate whether nicousamide could protect integrity of podocytes, and further its protection mechanisms. Sprague-Dawley (SD) rats were induced to DN by streptozotocin, and nicousamide (20 and 40 mg/kg) was orally administrated for 20 weeks. Every five weeks, the albuminuria was measured, and renal pathology was evaluated at the end of experiment. Real-time PCR and immunofluorescence were used to test expression of podocyte marker nephrin, CD2AP and podocine in rat kidney tissues. Western blot was used to test the activation and phosphorylation of TGFβ1-smad signaling pathway. surface plasmon resonance (SPR) technology was used to analyze whether nicousamide can interact with TGFβ1 receptor II (TGFβ RII) and receptor for advanced glycation endproducts (RAGE). Results demonstrate that nicousamide significantly reduces albuminuria and ameliorate the glomerulosclerosis in DN rats. RT-PCR and immunofluorescence demonstrate that nicousamide can increase the expression of podocyte markers and keep podocyte effacement. Phosphorylation of TGFβ RII and smad2 in rat kidney was inhibited by nicousamide dose dependently. SPR demonstrate that nicousamide have strong binding capability with hRAGE with Kd approximate 6 μM. These results indicate a protective effect of nicousamide against podocyte injury, and this effect might contribute from suppression of TGFβ-involved fibrosis and AGE-RAGE signaling activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。