Myosin-binding protein C stabilizes, but is not the sole determinant of SRX myosin in cardiac muscle

肌球蛋白结合蛋白 C 可稳定心肌中的 SRX 肌球蛋白,但并不是其唯一决定因素

阅读:5
作者:Shane Nelson, Samantha Beck-Previs, Sakthivel Sadayappan, Carl Tong, David M Warshaw

Abstract

The myosin super-relaxed (SRX) state is central to striated muscle metabolic and functional regulation. In skeletal muscle, SRX myosin are predominantly colocalized with myosin-binding protein C (MyBP-C) in the sarcomere C-zone. To define how cardiac MyBP-C (cMyBP-C) and its specific domains contribute to stabilizing the SRX state in cardiac muscle, we took advantage of transgenic cMyBP-C null mice and those expressing cMyBP-C with a 271-residue N-terminal truncation. Utilizing super-resolution microscopy, we determined the lifetime and subsarcomeric location of individual fluorescent-ATP turnover events within isolated cardiac myofibrils. The proportion of SRX myosin demonstrated a gradient along the half-thick filament, highest in the P- and C-zones (72 ± 9% and 71 ± 6%, respectively) and lower in the D-zone (45 ± 10%), which lies farther from the sarcomere center and lacks cMyBP-C, suggesting a possible role for cMyBP-C in stabilizing the SRX. However, myofibrils from cMyBP-C null mice demonstrated an ∼40% SRX reduction, not only within the now cMyBP-C-free C-zone (49 ± 9% SRX), but also within the D-zone (22 ± 5% SRX). These data suggest that the influence of cMyBP-C on the SRX state is not limited to the C-zone but extends along the thick filament. Interestingly, myofibrils with N-terminal truncated cMyBP-C had an SRX content and spatial gradient similar to the cMyBP-C null, indicating that the N terminus of cMyBP-C is necessary for cMyBP-C's role in enhancing the SRX gradient along the entire thick filament. Given that SRX myosin exist as a gradient along the thick filament that is highest in the C-zone, even in the absence of cMyBP-C or its N-terminus, an inherent bias must exist in the structure of the thick filament to stabilize the SRX state.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。