Discovery, synthesis and antibacterial evaluation of phenolic compounds from Cylicodiscus gabunensis

Cylicodiscus gabunensis中酚类化合物的发现、合成及抑菌评价

阅读:5
作者:Omar Aldulaimi, Falko Drijfhout, Fidelia I Uche, Paul Horrocks, Wen-Wu Li

Background

Cylicodiscus gabunensis Harms (Family Leguminosae) (CG) is an African medicinal plant used as a treatment of various ailments including malaria, liver diseases, and gastrointestinal disturbances. Its extracts showed potent in vitro antibacterial activity. However, the antibacterial components are unknown.

Conclusions

The results of this research rationalise the ethnobotanical use of C. gabunensis and suggest that gallate derivatives may serve as promising antibacterial agents for the treatment of infectious diseases.

Methods

In this study, the stem bark of the CG plant was extracted and its antibacterial property against a panel of Gram-negative and Gram-positive bacterial strains assessed using the disk diffusion assay method. Bioassay-guided fractionation of the bioactive extracts was employed to identify bioactive constituents using both gas and liquid chromatography mass spectrometry. Chemical synthesis was used to make the analogues of gallic acid. Microplate dilution assays and scanning electron microscopy (SEM) were used to evaluate the antibacterial properties and mechanism of action of the active fractions and pure compounds.

Results

The most bioactive sub-fractions derived from CG comprised of ethyl gallate, gallic acid and polyphenols. Five alkyl/alkenyl gallates were synthesized. A preliminary structure-activity relationship of gallic acid derivatives was obtained using the synthetic analogues and a series of commercially available phenolic compounds. Increasing the length of alkyl chains generally increases the potency of the alkyl gallates. Introducing a double bond with restricted conformations of the C-5 side chain has little effect on the antibacterial property. SEM analysis of the effect of alkyl gallates on Staphylococcus aureus indicates that they appear to interrupt S. aureus bacterial cell wall integrity. Conclusions: The results of this research rationalise the ethnobotanical use of C. gabunensis and suggest that gallate derivatives may serve as promising antibacterial agents for the treatment of infectious diseases.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。