Using the Marine Rotifer Brachionus plicatilis as an Endpoint to Evaluate Whether ROS-Dependent Hemolytic Toxicity Is Involved in the Allelopathy Induced by Karenia mikimotoi

以海洋轮虫褶皱臂尾轮虫为终点评价米氏卡伦藻诱导的化感作用是否与 ROS 依赖性溶血毒性有关

阅读:6
作者:Yuanyuan Li, Jianfei Yu, Tianli Sun, Chunchen Liu, Yu Sun, You Wang

Abstract

The toxic effects of the typically noxious bloom-forming dinoflagellate Karenia mikimotoi were studied using the allelopathic experimental system under controlled laboratory conditions. The potency of intact cell suspensions with whole cells, cell-free culture filtrate in different growth phases, and lysed cells with ultrasonication were compared, and the growth and reproduction of the marine rotifer Brachionus plicatilis were used as endpoints to evaluate toxic differences. The intact cell suspension resulted the most significant growth inhibition, including lethality, on the growth of B. plicatilis (p < 0.05). Lysed culture medium treated with ultrasonication and the cell-free culture filtrates at either the exponential or stationary phase exhibited limited negative impacts compared to the control according to changes in the population growth rate (r) and survival rate (p > 0.05). Reproduction presented a similar tendency to change, and the number of eggs produced per individual, as well as spawning period decreased in the whole cell and lysed cell suspensions. The key parameters in the lift table include the net reproductive rate (R&sub0;) and the intrinsic rate of increase (rm), which were more sensitive to treatment and were significantly suppressed compared to that of the control. The addition of the ROS inhibitor N-acetylcysteine (NAC) could not change the growth or reproduction patterns. Moreover, substantial hemolytic toxicity was found in the treatment of the intact cell suspension (p < 0.05), while limited toxicity was found in other treatments compared to that of the control. K. mikimotoi was speculated to secrete allelopathic substances onto the cell surface, and direct cell contact was necessary for allelopathic toxicity in B. plicatilis. Reactive oxygen species (ROS)-independent hemolytic toxicity was assumed to be the explanation for what was observed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。