Interactions of multiple signaling pathways in neuropeptide Y-mediated bimodal vascular smooth muscle cell growth

神经肽Y介导的双峰血管平滑肌细胞生长中多种信号通路的相互作用

阅读:7
作者:Jennifer Pons, Joanna Kitlinska, Danielle Jacques, Claudine Perreault, Moni Nader, Lindsay Everhart, Ying Zhang, Zofia Zukowska

Abstract

Neuropeptide Y (NPY), a sympathetic cotransmitter, acts via G protein-coupled receptors to stimulate constriction and vascular smooth muscle cell (VSMC) proliferation through interactions with its Y1 receptors. However, VSMC proliferation appears bimodal, with high- and low-affinity peaks differentially blocked by antagonists of both Y1 and Y5 receptors. Here, we sought to determine the signaling mechanisms of NPY-mediated bimodal mitogenesis. In rat aortic VSMCs, NPY's mitogenic effect at all concentrations was blocked by pertussis toxin and was associated with decreased forskolin-stimulated cAMP levels. NPY also increased intracellular calcium levels; in contrast to mitogenesis, this effect was dose dependent. The rise in intracellular Ca2+ depended on extracellular Ca2+ and was mediated via activation of Y1 receptors, but not Y5 receptors. Despite differences in calcium, the signaling pathways activated at low and high NPY concentrations were similar. The mitogenic effect of the peptide at all doses was completely blocked by inhibitors of calcium/calmodulin-dependent kinase II (CaMKII), protein kinase C (PKC), and mitogen-activated protein kinase kinase, MEK1/2. Thus, in VSMCs, NPY-mediated mitogenesis signals primarily via Y1 receptors activating 2 Ca2+-dependent, growth-promoting pathways -- PKC and CaMKII. At the high-affinity peak, these 2 pathways are amplified by Y5 receptor-mediated, calcium-independent inhibition of the adenylyl cyclase - protein kinase A (PKA) pathway. All 3 mechanisms converge to the extracellular signal-regulated kinases (ERK1/2) signaling cascade and lead to VSMC proliferation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。