Quality evaluation of four Ferula plants and identification of their key volatiles based on non-targeted metabolomics

基于非靶向代谢组学的四种阿魏属植物的品质评价及其主要挥发性物质的鉴定

阅读:9
作者:Meng Jiang, Mengwen Peng, Yuxia Li, Guifang Li, Xiaobo Li, Li Zhuang

Discussion

This study identified the difference in flavour between edible and non-edible Ferula plants and, for the first time, demonstrated the contribution of the efficacy of Ferula root to the unique flavour of the above-ground parts of Ferula. These results provide a theoretical basis for selecting Ferula for consumption and help evaluate the quality of different species of Ferula. Our findings may facilitate food processing and the further development of Ferula.

Methods

In this study, headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME/GC-MS) and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) non-targeted metabolomics techniques were used to systematically and comprehensively analyse secondary metabolites in the leaves and roots of four species of Ferula, considering their edibility.

Results

A total of 166 leaf volatile organic compounds (VOCs) and 1,079 root metabolites were identified. Additionally, 42 potential VOCs and 62 differential root metabolites were screened to distinguish between edible and non-edible Ferula. Twelve volatile metabolites were specific to F. feurlaeoides, and eight compounds were specific to the three edible Ferula species. The results showed that compounds containing sulphur, aldehydes, and ketones, which produce pungent odours, were the primary sources of the strong odour of Ferula. The root differential metabolites include 13 categories, among which the high concentration group is organic acids, amino acids, terpenoids and fatty acids. The bioactive metabolites and VOCs in the roots exhibited species-specific characteristics. VOCs with various odors were linked to the distribution of root metabolites in both edible and non-edible Ferula plants. The screened root markers may contribute to the formation of characteristic VOCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。