Identification of Molecular Mechanisms Responsible for the MMP-9-1562C/T Dependent Differential Regulation of Matrix Metalloproteinase-9 Expression in Human Neuron-like Cells

鉴定负责 MMP-9-1562C/T 依赖性基质金属蛋白酶-9 表达在人类类神经元细胞中差异调节的分子机制

阅读:13
作者:Sylwia Pabian-Jewuła, Magdalena Ambrożek-Latecka, Aneta Brągiel-Pieczonka, Klaudia Nowicka, Marcin Rylski

Abstract

The MMP-9-1562C/T polymorphism exerts an impact on the occurrence and progression of numerous disorders affecting the central nervous system. Using luciferase assays and Q-RT-PCR technique, we have discovered a distinct allele-specific influence of the MMP-9-1562C/T polymorphism on the MMP-9 (Extracellular Matrix Metalloproteinase-9) promoter activity and the expression of MMP-9 mRNA in human neurons derived from SH-SY5Y cells. Subsequently, by employing a pull-down assay paired with mass spectrometry analysis, EMSA (Electromobility Shift Assay), and EMSA supershift techniques, as well as DsiRNA-dependent gene silencing, we have elucidated the mechanism responsible for the allele-specific impact of the MMP-9-1562C/T polymorphism on the transcriptional regulation of the MMP-9 gene. We have discovered that the activity of the MMP-9 promoter and the expression of MMP-9 mRNA in human neurons are regulated in a manner that is specific to the MMP-9-1562C/T allele, with a stronger upregulation being attributed to the C allele. Furthermore, we have demonstrated that the allele-specific action of the MMP-9-1562C/T polymorphism on the neuronal MMP-9 expression is related to HDAC1 (Histone deacetylase 1) and ZNF384 (Zinc Finger Protein 384) transcriptional regulators. We show that HDAC1 and ZNF384 bind to the C and the T alleles differently, forming different regulatory complexes in vitro. Moreover, our data demonstrate that HDAC1 and ZNF384 downregulate MMP-9 gene promoter activity and mRNA expression in human neurons acting mostly via the T allele.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。