Role of cellulose response transporter-like protein CRT2 in cellulase induction in Trichoderma reesei

纤维素反应转运体样蛋白 CRT2 在里氏木霉纤维素酶诱导中的作用

阅读:6
作者:Su Yan, Yan Xu, Xiao-Wei Yu

Background

Induction of cellulase in cellulolytic fungi Trichoderma reesei is strongly activated by cellulosic carbon sources. The transport of cellulosic inducer and the perception of inducing signal is generally considered as the critical process for cellulase induction, that the inducing signal would be perceived by a sugar transporter/transceptor in T. reesei. Several sugar transporters are coexpressed during the induction stage, but which function they serve and how they work collaboratively are still difficult to elucidate.

Conclusions

Our study uncovers the novel function of CRT2 in cellulase induction collaborated with CRT1 and XYR1, possibly as a signal transductor. These results deepen the understanding of the influence of sugar transporters in cellulase production.

Results

In this study, we found that the constitutive expression of the cellulose response transporter-like protein CRT2 (previously identified as putative lactose permease TRE77517) improves cellulase induction on a cellulose, cellobiose or lactose medium. Functional studies indicate that the membrane-bound CRT2 is not a transporter of cellobiose, lactose or glucose in a yeast system, and it also does not affect cellobiose and lactose utilization in T. reesei. Further study reveals that CRT2 has a slightly similar function to the cellobiose transporter CRT1 in cellulase induction. Overexpression of CRT2 led to upregulation of CRT1 and the key transcription factor XYR1. Moreover, overexpression of CRT2 could partially compensate for the function loss of CRT1 on cellulase induction. Conclusions: Our study uncovers the novel function of CRT2 in cellulase induction collaborated with CRT1 and XYR1, possibly as a signal transductor. These results deepen the understanding of the influence of sugar transporters in cellulase production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。