Panobinostat (LBH589) combined with AM1241 induces cervical cancer cell apoptosis through autophagy pathway

帕比司他(LBH589)联合AM1241通过自噬途径诱导宫颈癌细胞凋亡

阅读:4
作者:Bo Sheng, Wenwen Wang, Dongyue Xia, Xiangdong Qu

Conclusion

LBH589 combined with AM1241 activated the endoplasmic reticulum emergency pathway, DNA damage repair signaling pathway, oxidative stress and autophagy pathway, ultimately promoting the apoptosis of cervical cancer cells. These findings suggest that the co-administration of LBH589 and AM1241 may be a new treatment plan for the treatment of cervical cancer.

Methods

The viability of the cervical cancer cells was measured by cell counting kit-8 (CCK-8) assay, and the synergistic effect was analyzed using SynergyFinder. Cell proliferation was tested by cell cloning. The apoptosis and reactive oxygen species (ROS) production in cervical cancer cells were analyzed by flow cytometry. Western blot and quantitative real-time PCR (qRT-PCR) were employed to determine changes in protein and gene levels of pathway-related factors.

Purpose

The study aims to investigate the apoptotic effects of combining LBH589 and AM1241 (a selective CB2 receptor agonist) on cervical cancer cells and elucidating the mechanism of this combined therapy, which may provide innovative strategies for treating this disease.

Results

By the results of cytotoxicity assay, SiHa cells were selected and treated with 0.1 μM LBH589 and 4 μM AM1241 for 24 h for subsequent experiments. The combination of both was synergistic as determined by bliss, ZIP, HSA and LOEWE synergy score. Plate cloning results showed that LBH589 combined with AM1241 inhibited the proliferation of cervical cancer cells compared to individual drug. Additionally, compared with LBH589 alone, the combination of LBH589 and AM1241 induced autophagy by increasing LC3II/LC3I and decreasing P62/GAPDH, leading to a significantly higher rate of apoptosis. Pharmacological inhibition of also inhibited apoptosis. Consistently, we found that the endoplasmic reticulum, DNA damage repair pathway were induced after co-administration. Furthermore, cellular ROS increased after co-administration, and apoptosis was inhibited by the addition of ROS scavenger.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。