Exercise therapy facilitates neural remodeling and functional recovery post-spinal cord injury via PKA/CREB signaling pathway modulation in rats

运动疗法通过调节大鼠PKA/CREB信号通路促进脊髓损伤后神经重塑和功能恢复

阅读:9
作者:Xinwang Ying, Qingfeng Xie, Yanfang Zhao, Jiamen Shen, Junqing Huang, Zhiyi Feng, Liuxi Chu, Junpeng Xu, Dawei Jiang, Ping Wu, Yanming Zuo, Shengcun Li, Chang Jiang, Xiaokun Li, Zhouguang Wang

Background

Neuronal structure is disrupted after spinal cord injury (SCI), causing functional impairment. The effectiveness of exercise therapy (ET) in clinical settings for nerve remodeling post-SCI and its underlying mechanisms remain unclear. This study aims to explore the effects and related mechanisms of ET on nerve remodeling in SCI rats.

Conclusions

Our findings indicated that: (1) ET counteracted the H89-induced suppression of the PKA/CREB signaling pathway following SCI; (2) ET significantly alleviated neuronal injury and improved motor dysfunction; (3) ET facilitated neuronal regeneration by mediating the PKA/CREB signaling pathway; (4) ET enhanced synaptic and dendritic spine plasticity, as well as myelin sheath remodeling, post-SCI through the PKA/CREB signaling pathway.

Methods

We randomly assigned rats to various groups: sham-operated group, sham-operated + ET, SCI alone, SCI + H89, SCI + ET, and SCI + ET + H89. Techniques including motor-evoked potential (MEP), video capture and analysis, the Basso-Beattie-Bresnahan (BBB) scale, western blotting, transmission electron microscopy, hematoxylin and eosin staining, Nissl staining, glycine silver staining, immunofluorescence, and Golgi staining were utilized to assess signal conduction capabilities, neurological deficits, hindlimb performance, protein expression levels, neuron ultrastructure, and tissue morphology. H89-an inhibitor that targets the protein kinase A (PKA)/cAMP response element-binding (CREB) signaling pathway-was employed to investigate molecular mechanisms.

Results

This study found that ET can reduce neuronal damage in rats with SCI, protect residual tissue, promote the remodeling of motor neurons, neurofilaments, dendrites/axons, synapses, and myelin sheaths, reorganize neural circuits, and promote motor function recovery. In terms of mechanism, ET mainly works by mediating the PKA/CREB signaling pathway in neurons. Conclusions: Our findings indicated that: (1) ET counteracted the H89-induced suppression of the PKA/CREB signaling pathway following SCI; (2) ET significantly alleviated neuronal injury and improved motor dysfunction; (3) ET facilitated neuronal regeneration by mediating the PKA/CREB signaling pathway; (4) ET enhanced synaptic and dendritic spine plasticity, as well as myelin sheath remodeling, post-SCI through the PKA/CREB signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。