Impacts of Atmospheric CO2 and Soil Nutritional Value on Plant Responses to Rhizosphere Colonization by Soil Bacteria

大气 CO2 和土壤营养价值对植物根际土壤细菌定植反应的影响

阅读:6
作者:Alex Williams, Pierre Pétriacq, David J Beerling, T E Anne Cotton, Jurriaan Ton

Abstract

Concerns over rising atmospheric CO2 concentrations have led to growing interest in the effects of global change on plant-microbe interactions. As a primary substrate of plant metabolism, atmospheric CO2 influences below-ground carbon allocation and root exudation chemistry, potentially affecting rhizosphere interactions with beneficial soil microbes. In this study, we have examined the effects of different atmospheric CO2 concentrations on Arabidopsis rhizosphere colonization by the rhizobacterial strain Pseudomonas simiae WCS417 and the saprophytic strain Pseudomonas putida KT2440. Rhizosphere colonization by saprophytic KT2440 was not influenced by sub-ambient (200 ppm) and elevated (1,200 ppm) concentrations of CO2, irrespective of the carbon (C) and nitrogen (N) content of the soil. Conversely, rhizosphere colonization by WCS417 in soil with relatively low C and N content increased from sub-ambient to elevated CO2. Examination of plant responses to WCS417 revealed that plant growth and systemic resistance varied according to atmospheric CO2 concentration and soil-type, ranging from growth promotion with induced susceptibility at sub-ambient CO2, to growth repression with induced resistance at elevated CO2. Collectively, our results demonstrate that the interaction between atmospheric CO2 and soil nutritional status has a profound impact on plant responses to rhizobacteria. We conclude that predictions about plant performance under past and future climate scenarios depend on interactive plant responses to soil nutritional status and rhizobacteria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。