De Novo Assembly-Based Analysis of RPGR Exon ORF15 in an Indigenous African Cohort Overcomes Limitations of a Standard Next-Generation Sequencing (NGS) Data Analysis Pipeline

基于从头组装的非洲土著群体 RPGR 外显子 ORF15 分析克服了标准下一代测序 (NGS) 数据分析流程的局限性

阅读:9
作者:Jordi Maggi, Lisa Roberts, Samuel Koller, George Rebello, Wolfgang Berger, Rajkumar Ramesar

Abstract

RPGR exon ORF15 variants are one of the most frequent causes for inherited retinal disorders (IRDs), in particular retinitis pigmentosa. The low sequence complexity of this mutation hotspot makes it prone to indels and challenging for sequence data analysis. Whole-exome sequencing generally fails to provide adequate coverage in this region. Therefore, complementary methods are needed to avoid false positives as well as negative results. In this study, next-generation sequencing (NGS) was used to sequence long-range PCR amplicons for an IRD cohort of African ancestry. By developing a novel secondary analysis pipeline based on de novo assembly, we were able to avoid the miscalling of variants generated by standard NGS analysis tools. We identified pathogenic variants in 11 patients (13% of the cohort), two of which have not been reported previously. We provide a novel and alternative end-to-end secondary analysis pipeline for targeted NGS of ORF15 that is less prone to false positive and negative variant calls.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。