GYY4137 stimulates osteoblastic cell proliferation and differentiation via an ERK1/2-dependent anti-oxidant mechanism

GYY4137 通过 ERK1/2 依赖的抗氧化机制刺激成骨细胞增殖和分化

阅读:6
作者:Meng Lv, Yang Liu, Ting-Hui Xiao, Wei Jiang, Bo-Wen Lin, Xiao-Ming Zhang, Yi-Miao Lin, Zhong-Shi Xu

Conclusions

GYY4137 stimulates osteoblastic cell proliferation and bone differentiation via an ERK1/2-dependent anti-oxidant mechanism. Our findings suggest that GYY4137 may have a potentially therapeutic value for osteoporosis.

Methods

The MC3T3-E1 osteoblast-like cell line was cultured in plate. After pretreatment with GYY4137 (100 µM) for 30 min, the cells were washed twice with PBS solution and then incubated in freshly prepared low serum medium containing 400 μM H2O2 for 4 h. Cells viability was evaluated with the MTT. Cell apoptosis was evaluated by the Hoechst 33342. Then, ALP activity, NO and the superoxide dismutase (SOD) activity is determined by assay kit accordingly, ALP mRNA is identified by RT-PCR. ERK1/2 was analyzed by Western blot. The ROS production was measured with a fluorescence reader. All data was analyzed by SPSS 16.0.

Objective

Oxidative stress plays a critical role in the development of osteoporosis. Hydrogen sulfide (H2S), produces anti-oxidant effect in various biological systems. The present study found that GYY4137, a slow H2S releasing compound, stimulated both mRNA level and activity of alkaline phosphatase, the marker of osteoblast differentiation. This research aims to explore the mechanism on how GYY4137 stimulates osteoblastic cell proliferation and differentiation via an ERK1/2-dependent anti-oxidant approach.

Results

We found in the present study that GYY4137, a slow H2S releasing compound, stimulated both mRNA level and activity of alkaline phosphatase, the marker of osteoblast differentiation. RT-PCR shows that GYY4137 stimulated the transcriptional levels of Runx2, a key transcription factor associated with osteoblast differentiation. These data suggest that GYY4137 may stimulate osteoblastic cell proliferation and differentiation. Moreover, GYY4137, which alone at 1-1000 µM had no significant effect, protected MC3T3-E1 osteoblastic cells against hydrogen peroxide (H2O2)-induced cell death and apoptosis. This was mediated by its anti-oxidant effect, as GYY4137 reversed the reduced superoxide dismutase activity and the elevated productions of reactive oxygen species and nitric oxide in the osteoblastic cells treated with H2O2. Western blotting analysis showed that the protective effects of GYY4137 were mediated by suppression of ERK1/2. Conclusions: GYY4137 stimulates osteoblastic cell proliferation and bone differentiation via an ERK1/2-dependent anti-oxidant mechanism. Our findings suggest that GYY4137 may have a potentially therapeutic value for osteoporosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。