Therapeutic potential of brentuximab vedotin in breast cancer and lymphoma via targeted apoptosis and gene regulation

Brentuximab vedotin 通过靶向凋亡和基因调控在乳腺癌和淋巴瘤中的治疗潜力

阅读:5
作者:Abeer Ezzat, Mohga Shafiek, Shimaa Shawki, Shaimaa Abdel-Ghany, Mahmoud Nazih, Hussein Sabit

Abstract

This study was designed to assess the effect of brentuximab vedotin on several breast cancer cell lines in terms of promoting apoptosis and managing cancer progression. Additionally, the study investigated the potential of repurposing this drug for new therapeutic reasons, beyond its original indications. The study evaluates the cytotoxic effects of Brentuximab vedotin across five cell lines: normal human skin fibroblasts (HSF), three breast cancer cell lines (MCF-7, MDA-MB-231, and T-47D), and histiocytic lymphoma (U-937). Brentuximab treatment was administered at four time points (0, 24, 48, and 72 h), with cell viability assessed at each interval. HSF cells, serving as controls, exhibited minimal viability loss (above 70%), indicating limited toxicity in normal fibroblasts. In contrast, MCF-7 and MDA-MB-231 cells demonstrated time-dependent reductions in viability, with a pronounced decline by 72 h, suggesting Brentuximab's efficacy in both ER-positive and triple-negative breast cancer. T-47D cells also showed decreased viability, though at a slower rate. U-937 cells exhibited the most substantial reduction, highlighting Brentuximab's potent activity against hematologic malignancies. Wound healing assays further revealed that Brentuximab significantly impaired the migration and healing capacity of cancer cells compared to untreated controls. Additionally, cell cycle analysis indicated G2/M phase arrest in cancer cells, particularly in MCF-7 and MDA-MB-231, while HSF cells remained largely unaffected. Apoptosis detection confirmed Brentuximab-induced cell death, with significant increases in late apoptosis in cancer lines, especially by 72 h. Gene expression analysis revealed upregulation of pro-apoptotic genes (BAX, Caspase 3, and Caspase 9) in cancer cells, alongside a decrease in anti-apoptotic BCL-2 expression. These findings suggest Brentuximab's selective cytotoxicity against cancer cells and its potential as an effective therapeutic agent, particularly in breast cancer and histiocytic lymphoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。