Neurofilament Light (NF-L) Chain Protein from a Highly Polymerized Structural Component of the Neuronal Cytoskeleton to a Neurodegenerative Disease Biomarker in the Periphery

神经丝轻链 (NF-L) 蛋白,来自神经元细胞骨架的高度聚合结构成分,以及外周神经退行性疾病的生物标志物

阅读:8
作者:Yuhai Zhao, Lisa Arceneaux, Frank Culicchia, Walter J Lukiw

Abstract

Neurofilaments (NFs) are critical scaffolding components of the axoskeleton of healthy neurons interacting directly with multiple synaptic-phosphoproteins to support and coordinate neuronal cell shape, cytoarchitecture, synaptogenesis and neurotransmission. While neuronal presynaptic proteins such as synapsin-2 (SYN II) degrade rapidly via the ubiquitin-proteasome pathway, a considerably more stable neurofilament light (NF-L) chain protein turns over much more slowly, and in several neurological diseases is accompanied by a pathological shift from an intracellular neuronal cytoplasmic location into various biofluid compartments. NF-L has been found to be significantly elevated in peripheral biofluids in multiple neurodegenerative disorders, however it is not as widely appreciated that NF-L expression within neurons undergoing inflammatory neurodegeneration exhibit a significant down-regulation in these neuron-specific intermediate-filament components. Down-regulated NF-L in neurons correlates well with the observed axonal and neuronal atrophy, neurite deterioration and synaptic disorganization in tissues affected by Alzheimer's disease (AD) and other progressive, age-related neurological diseases. This Review paper: (i) will briefly assess the remarkably high number of neurological disorders that exhibit NF-L depolymerization, liberation from neuron-specific compartments, mobilization and enrichment into pathological biofluids; (ii) will evaluate how NF-L exhibits compartmentalization effects in age-related neurological disorders; (iii) will review how the shift of NF-L compartmentalization from within the neuronal cytoskeleton into peripheral biofluids may be a diagnostic biomarker for neuronal-decline in all cause dementia most useful in distinguishing between closely related neurological disorders; and (iv) will review emerging evidence that deficits in plasma membrane barrier integrity, pathological transport and/or vesicle-mediated trafficking dysfunction of NF-L may contribute to neuronal decline, with specific reference to AD wherever possible.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。