A dual-omics approach for profiling plant responses to biostimulant applications under controlled and field conditions

采用双组学方法分析受控和田间条件下植物对生物刺激剂应用的反应

阅读:7
作者:Ali Baghdadi, Maria Cristina Della Lucia, Matteo Borella, Giovanni Bertoldo, Samathmika Ravi, Walter Zegada-Lizarazu, Claudia Chiodi, Elena Pagani, Christian Hermans, Piergiorgio Stevanato, Serenella Nardi, Andrea Monti, Francesca Mangione

Abstract

A comprehensive approach using phenomics and global transcriptomics for dissecting plant response to biostimulants is illustrated with tomato (Solanum lycopersicum cv. Micro-Tom and Rio Grande) plants cultivated in the laboratory, greenhouse, and open field conditions. Biostimulant treatment based on an Ascophyllum nodosum extract (ANE) was applied as a foliar spray with two doses (1 or 2 l ha-1) at three different phenological stages (BBCH51, BBCH61, and BBCH65) during the flowering phase. Both ANE doses resulted in greater net photosynthesis rate, stomatal conductance, and fruit yield across all culture conditions. A global transcriptomic analysis of leaves from plants grown in the climate chamber, revealed a greater number of differentially expressed genes (DEGs) with the low ANE dose compared to the greater one. The second and third applications induced broader transcriptome changes compared to the first one, indicating a cumulative treatment effect. The functional enrichment analysis of DEGs highlighted pathways related to stimulus-response and photosynthesis, consistent with the morpho-physiological observations. This study is the first comprehensive dual-omics approach for profiling plant responses to biostimulants across three different culture conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。