Abstract
The objective of the present study was to investigate the mechanism whereby long-chain non-coding RNA (LncRNA) antisense non-coding RNA (ANRIL) in the INK4 locus promotes angiogenesis and thrombosis by the miR-99a and miR-449a interventional autophagy pathway. The expression of LncRNA ANRIL, autophagy-related gene beclin1, and miR-99a and miR-449a in human umbilical vein endothelial cells (HUVECs) was determined by qRT-PCR. Thrombomodulin expression was examined by Western blotting assays. The levels of autophagy-related factors were determined by ELISA. CCK-8 assays were used to assess cell viabilities. Apoptosis was detected by flow cytometry via annexin V-FITC/propidium iodide double labeling and TUNEL assays. The interaction between ANRIL, miR-99a and miR-449a was studied using luciferase reporter assays. The role of ANRIL in autophagy was assessed in rats. Our data revealed that ANRIL and beclin-1 were highly expressed, while miR-99a and miR-449a were down-regulated in HUVECs serum of the autophagy model. Luciferase reporter assays, in vitro rescue assays, and Matrigel assays demonstrated that ANRIL increased beclin-1 expression via miR-99a and miR-449a sponges to upregulate thrombomodulin and promote angiogenesis. In addition, in vivo experiments confirmed that knockdown of ANRIL reduced thrombosis in rats. In conclusion, ANRIL promotes angiogenesis and thrombosis by upregulating the expression of miR-99a and miR-449a during autophagy.
