The BK channel accessory beta1 subunit determines alcohol-induced cerebrovascular constriction

BK 通道附件 β1 亚基决定酒精引起的脑血管收缩

阅读:4
作者:Anna N Bukiya, Jianxi Liu, Alejandro M Dopico

Abstract

Ethanol-induced inhibition of myocyte large conductance, calcium- and voltage-gated potassium (BK) current causes cerebrovascular constriction, yet the molecular targets mediating EtOH action remain unknown. Using BK channel-forming (cbv1) subunits from cerebral artery myocytes, we demonstrate that EtOH potentiates and inhibits current at Ca(i)(2+) lower and higher than approximately 15 microM, respectively. By increasing cbv1's apparent Ca(i)(2+)-sensitivity, accessory BK beta(1) subunits shift the activation-to-inhibition crossover of EtOH action to <3 microM Ca(i)(2+), with consequent inhibition of current under conditions found during myocyte contraction. Knocking-down KCNMB1 suppresses EtOH-reduction of arterial myocyte BK current and vessel diameter. Therefore, BK beta(1) is the molecular effector of alcohol-induced BK current inhibition and cerebrovascular constriction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。