Panaxadiol inhibits synaptic dysfunction in Alzheimer's disease and targets the Fyn protein in APP/PS1 mice and APP-SH-SY5Y cells

人参二醇可抑制阿尔茨海默病的突触功能障碍,并靶向 APP/PS1 小鼠和 APP-SH-SY5Y 细胞中的 Fyn 蛋白

阅读:4
作者:Xicai Liang, Yingjia Yao, Ying Lin, Liang Kong, Honghe Xiao, Yue Shi, Jingxian Yang

Aim

Alzheimer's disease (AD), a neurodegenerative disease, is characterized by memory loss and synaptic damage. Up to now, there are limited drugs to cure or delay the state of this illness. Recently, the Fyn tyrosine kinase is implicated in AD pathology triggered by synaptic damage. Thus, Fyn inhibition may prevent or delay the AD progression. Therefore, in this paper, we investigated whether Panaxadiol could decrease synaptic damage in AD and the underlying mechanism. Main

Methods

The ability of learning and memory of mice has detected by Morris Water Maze. The pathological changes detected by H&E staining and Nissl staining. The percentage of cell apoptosis and the calcium concentration were detected by Flow Cytometry in vitro. The amount of synaptic protein and related proteins in the Fyn/GluN2B/CaMKIIα signaling pathway were detected by Western Blot. Key findings: In the present article, Panaxadiol could significantly improve the ability of learning and memory of mice and reduce its synaptic dysfunction. Panaxadiol could down-regulate GluN2B's phosphorylation level by inhibition Fyn kinase activity, Subsequently, decrease Ca2+-mediated synaptic damage, reducing LDH leakage, inhibiting apoptosis in AD, resulting in facilitating the cells survival. For the underlying molecular mechanism, we used PP2 to block the Fyn/GluN2B/CaMKIIα signaling pathway. The

Significance

Our results indicate that Panaxadiol could decrease synaptic damage, which will cause AD via inhibition of the Fyn/GluN2B/CaMKIIα signaling pathway. Thus, the Panaxadiol is a best promising candidate to test as a potential therapy for AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。