CD36 dependent redoxosomes promotes ceramide-mediated pancreatic β-cell failure via p66Shc activation

CD36 依赖性氧化还原体通过激活 p66Shc 促进神经酰胺介导的胰腺 β 细胞衰竭

阅读:5
作者:Udayakumar Karunakaran, Suma Elumalai, Jun Sung Moon, Kyu Chang Won

Abstract

Altered metabolism is implicated in the pathogenesis of beta-cell failure in type 2 diabetes (T2D). Plasma and tissue levels of ceramide species play positive roles in inflammatory and oxidative stress responses in T2D. However, oxidative targets and mechanisms underlying ceramide signaling are unclear. We investigated the role of CD36-dependent redoxosome (redox-active endosome), a membrane-based signaling agent, in ceramide-induced beta-cell dysfunction and failure. Exposure of beta cells to C2-ceramide (N-acetyl-sphingosine) induced a CD36-dependent non-receptor tyrosine kinase Src-mediated redoxosome (Vav2-Rac1-NOX) formation. Activated Rac1-GTP-NADPH oxidase complex induced c-Jun-N-terminal kinase (JNK) activation and nuclear factor (NF)-kB transcription, which was associated with thioredoxin-interacting protein (TXNIP) upregulation and thioredoxin activity suppression. Upregulated JNK expression induced p66Shc serine36 phosphorylation and peroxiredoxin-3 hyperoxidation, causing beta-cell apoptosis via mitochondrial dysfunction. CD36 inhibition by sulfo-N-succinimidyl oleate (SSO) or CD36 siRNA blocked C2-ceramide-induced redoxosome activation, thereby decreasing JNK-dependent p66Shc serine36 phosphorylation. CD36 inhibition downregulated TXNIP expression and promoted thioredoxin activity via enhanced thioredoxin reductase activity, which prevented peroxiredoxin-3 oxidation. CD36 inhibition potentiated glucose-stimulated insulin secretion and prevented beta-cell apoptosis. Our results reveal a new role of CD36 during early molecular events that lead to Src-mediated redoxosome activation, which contributes to ceramide-induced pancreatic beta-cell dysfunction and failure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。