Synthesis of CoFe2O4 magnetic nanoparticles for application in photocatalytic removal of azithromycin from wastewater

CoFe2O4 磁性纳米粒子的合成及其在光催化去除废水中的阿奇霉素中的应用

阅读:6
作者:Ali Modabberasl, Tahereh Pirhoushyaran, Seyyed Hamid Esmaeili-Faraj

Abstract

Azithromycin is one of the most widely used antibiotics in medicine prescribed for various infectious diseases such as COVID-19. A significant amount of this drug is always disposed of in hospital effluents. In this study, the removal of azithromycin using Cobalt-Ferrite magnetic nanoparticles (MNP) is investigated in the presence of UV light. For this purpose, magnetic nanoparticles are synthesized and added to the test samples as a catalyst in specific proportions. To determine the structural and morphological properties of nanoparticles, characterization tests including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating-sample magnetometer (VSM), and Energy-dispersive X-ray spectroscopy (EDX) are performed. 27 runs have been implemented based on the design of experiments using the Box-Behnken Design (BBD) method. Parameters are the initial concentration of azithromycin (20-60 mg/L), contact time (30-90 min), pH (6-10), and the dose of magnetic nanoparticles (20-60 mg/L). The obtained model interprets test results with high accuracy (R2 = 0.9531). Also, optimization results by the software show that the contact time of 90 min, MNP dosage of 60 mg/L, pH value of 6.67, and azithromycin initial concentration of 20 mg/L leads to the highest removal efficiency of 89.71%. These numbers are in the range of other studies in this regard.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。