Lactide and Ethylene Brassylate-Based Thermoplastic Elastomers and Their Nanocomposites with Carbon Nanotubes: Synthesis, Mechanical Properties and Interaction with Astrocytes

丙交酯和乙烯-十二酸酯基热塑性弹性体及其与碳纳米管的纳米复合材料:合成、机械性能及与星形胶质细胞的相互作用

阅读:5
作者:Carlos Bello-Álvarez, Agustin Etxeberria, Yurena Polo, Jose-Ramon Sarasua, Ester Zuza, Aitor Larrañaga

Abstract

Polylactide (PLA) is among the most commonly used polymers for biomedical applications thanks to its biodegradability and cytocompatibility. However, its inherent stiffness and brittleness are clearly inappropriate for the regeneration of soft tissues (e.g., neural tissue), which demands biomaterials with soft and elastomeric behavior capable of resembling the mechanical properties of the native tissue. In this work, both L- and D,L-lactide were copolymerized with ethylene brassylate, a macrolactone that represents a promising alternative to previously studied comonomers (e.g., caprolactone) due to its natural origin. The resulting copolymers showed an elastomeric behavior characterized by relatively low Young's modulus, high elongation at break and high strain recovery capacity. The thermoplastic nature of the resulting copolymers allows the incorporation of nanofillers (i.e., carbon nanotubes) that further enable the modulation of their mechanical properties. Additionally, nanostructured scaffolds were easily fabricated through a thermo-pressing process with the aid of a commercially available silicon stamp, providing geometrical cues for the adhesion and elongation of cells representative of the nervous system (i.e., astrocytes). Accordingly, the lactide and ethylene brassylate-based copolymers synthesized herein represent an interesting formulation for the development of polymeric scaffolds intended to be used in the regeneration of soft tissues, thanks to their adjustable mechanical properties, thermoplastic nature and observed cytocompatibility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。