Mechanical stimulation promotes fibrochondrocyte proliferation by activating the TRPV4 signaling pathway during tendon-bone insertion healing: CCN2 plays an important regulatory role

机械刺激通过激活TRPV4信号通路促进肌腱骨插入愈合过程中纤维软骨细胞增殖:CCN2起重要调控作用

阅读:6
作者:Xuting Bian, Xiao Liu, Mei Zhou, Hong Tang, Rui Wang, Lin Ma, Gang He, Shibo Xu, Yunjiao Wang, Jindong Tan, Kanglai Tang, Lin Guo

Background

We previously confirmed that mechanical stimulation is an important factor in the repair of tendon-bone insertion (TBI) injuries and that mechanoreceptors such as transient receptor potential ion-channel subfamily V member 4 (TRPV4; also known as transient receptor potential vanilloid 4) are key to transforming mechanical stimulation into intracellular biochemical signals. This study aims to elucidate the mechanism of mechanical stimulation regulating TRPV4.

Conclusions

Mechanical stimulation promoted fibrochondrocyte proliferation and TBI healing by activating TRPV4 channels and the PI3K/AKT signaling pathway, and CCN2 may be a key regulatory protein in maintaining TRPV4 activation.

Methods

Immunohistochemical staining and western blotting were used to evaluate cartilage repair at the TBI after injury. The RNA expression and protein expression of mechanoreceptors and key pathway molecules regulating cartilage proliferation were analyzed. TBI samples were collected for transcriptome sequencing to detect gene expression. Calcium-ion imaging and flow cytometry were used to evaluate the function of TPRV4 and cellular communication network factor 2 (CCN2) after the administration of siRNA, recombinant adenovirus and agonists.

Results

We found that treadmill training improved the quality of TBI healing and enhanced fibrochondrocyte proliferation. The transcriptome sequencing results suggested that the elevated expression of the mechanistically stimulated regulator CCN2 and the exogenous administration of recombinant human CCN2 significantly promoted TRPV4 protein expression and fibrochondrocyte proliferation. In vitro, under mechanical stimulation conditions, small interfering RNA (siRNA)-CCN2 not only inhibited the proliferation of primary fibrochondrocytes but also suppressed TRPV4 protein expression and activity. Subsequently, primary fibrochondrocytes were treated with the TRPV4 agonist GSK1016790A and the recombinant adenovirus TRPV4 (Ad-TRPV4), and GSK1016790A partially reversed the inhibitory effect of siRNA-CCN2. The phosphoinositide 3-kinase/ protein kinase B (PI3K/AKT) signaling pathway participated in the above process. Conclusions: Mechanical stimulation promoted fibrochondrocyte proliferation and TBI healing by activating TRPV4 channels and the PI3K/AKT signaling pathway, and CCN2 may be a key regulatory protein in maintaining TRPV4 activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。