Synthesis and antiplasmodial activity of regioisomers and epimers of second-generation dual acting ivermectin hybrids

第二代双重作用伊维菌素杂种的区域异构体和差向异构体的合成及抗疟原虫活性

阅读:9
作者:Lovepreet Singh, Diana Fontinha, Denise Francisco, Miguel Prudêncio, Kamaljit Singh

Abstract

With its strong effect on vector-borne diseases, and insecticidal effect on mosquito vectors of malaria, inhibition of sporogonic and blood-stage development of Plasmodium falciparum, as well as in vitro and in vivo impairment of the P. berghei development inside hepatocytes, ivermectin (IVM) continues to represent an antimalarial therapeutic worthy of investigation. The in vitro activity of the first-generation IVM hybrids synthesized by appending the IVM macrolide with heterocyclic and organometallic antimalarial pharmacophores, against the blood-stage and liver-stage infections by Plasmodium parasites prompted us to design second-generation molecular hybrids of IVM. Here, a structural modification of IVM to produce novel molecular hybrids by using sub-structures of 4- and 8-aminoquinolines, the time-tested antiplasmodial agents used for treating the blood and hepatic stage of Plasmodium infections, respectively, is presented. Successful isolation of regioisomers and epimers has been demonstrated, and the evaluation of their in vitro antiplasmodial activity against both the blood stages of P. falciparum and the hepatic stages of P. berghei have been undertaken. These compounds displayed structure-dependent antiplasmodial activity, in the nM range, which was more potent than that of IVM, its aglycon or primaquine, highlighting the superiority of this hybridization strategy in designing new antiplasmodial agents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。