Micro/Nanoarchitectonics of 3D Printed Scaffolds with Excellent Biocompatibility Prepared Using Femtosecond Laser Two-Photon Polymerization for Tissue Engineering Applications

采用飞秒激光双光子聚合制备具有良好生物相容性的 3D 打印支架的微/纳米结构,用于组织工程应用

阅读:7
作者:Yanping Yuan, Lei Chen, Ziyuan Shi, Jimin Chen

Abstract

The fabrication of high-precision scaffolds with excellent biocompatibility for tissue engineering has become a research hotspot. Two-photon polymerization (TPP) can break the optical diffraction limit and is used to fabricate high-resolution three-dimensional (3D) microstructures. In this study, the biological properties, and machinability of photosensitive gelatin methacrylate (GelMA) hydrogel solutions are investigated, and the biocompatibility of 3D scaffolds using a photosensitive GelMA hydrogel solution fabricated by TPP is also evaluated. The biological properties of photosensitive GelMA hydrogel solutions are evaluated by analyzing their cytotoxicity, swelling ratio, and degradation ratio. The experimental results indicate that: (1) photosensitive GelMA hydrogel solutions with remarkable biological properties and processability are suitable for cell attachment. (2) a micro/nano 3D printed scaffold with good biocompatibility is fabricated using a laser scanning speed of 150 μm/s, laser power of 7.8 mW, layer distance of 150 nm and a photosensitive GelMA hydrogel solution with a concentration of 12% (w/v). Micro/nano additive manufacturing will have broad application prospects in the tissue engineering field.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。