Effects of beta-conglycinin intake on circulating FGF21 levels and brown adipose tissue activity in Japanese young men: a single intake study and a randomized controlled trial

β-伴大豆球蛋白摄入对日本年轻男性血液循环 FGF21 水平和棕色脂肪组织活性的影响:单次摄入研究和随机对照试验

阅读:8
作者:Hirokazu Taniguchi, Keigo Shimizu, Sayori Wada, Shinsuke Nirengi, Haruki Kataoka, Akane Higashi

Background

Human brown adipose tissue (BAT) activity has beneficial effects on body composition and glucose metabolism. A previous study reported that beta-conglycinin intake induced postprandial fibroblast growth factor 21 (FGF21) secretion, thereby promoting adipose tissue thermogenesis in mice. Since it has not been evaluated whether beta-conglycinin intake is associated with induced FGF21 secretion and BAT thermogenesis in humans, the current study examined the effects of beta-conglycinin intake on circulating FGF21 level and BAT activity.

Conclusions

This study reveals that although serum FGF21 levels are not increased by a single or short-term intake of beta-conglycinin, the Δ basal FGF21 level is associated with Δ BAT activity. These results suggest that human FGF21 responsiveness is different from that of rodents and support the importance of FGF21 in human BAT thermogenesis.

Methods

Twenty-two healthy young male subjects participated. This study consisted of 2 interventional studies. In one of them, the effects of single beta-conglycinin intake at thermoneutral temperature on circulating FGF21 levels were examined (n = 7). The other study was a single-blinded randomized crossover trial of 2 weeks (n = 14). The subjects were exposed to mild cold conditions using a climatic chamber, and BAT activity was analyzed using thermography. Serum FGF21 level was determined by ELISA in these studies.

Results

In the single intake study, serum FGF21 level was the highest before beta-conglycinin intake and gradually and significantly decreased throughout the 2-h experimental period (P < 0.05). The randomized crossover trial showed that 2-week beta-conglycinin intake did not affect serum FGF21 level and BAT activity, whereas changes (Δ) in baseline levels of serum FGF21 were positively correlated with Δ BAT activity (P < 0.05). In addition, analysis of each group revealed that there was significant correlation between the Δ serum FGF21 level and Δ BAT activity in the beta-conglycinin group (P < 0.05), but not in the placebo group. Conclusions: This study reveals that although serum FGF21 levels are not increased by a single or short-term intake of beta-conglycinin, the Δ basal FGF21 level is associated with Δ BAT activity. These results suggest that human FGF21 responsiveness is different from that of rodents and support the importance of FGF21 in human BAT thermogenesis.

Trial registration

This study is registered with University Hospital Medical Information Network in Japan (number 000038723, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000043942 ).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。