Breaking the Restriction Barriers and Applying CRISPRi as a Gene Silencing Tool in Pseudoclostridium thermosuccinogenes

打破限制壁垒,将 CRISPRi 用作 Pseudoclostridium thermosuccinogenes 中的基因沉默工具

阅读:8
作者:Joyshree Ganguly, Maria Martin-Pascual, Diego Montiel González, Alkan Bulut, Bram Vermeulen, Ivo Tjalma, Athina Vidaki, Richard van Kranenburg

Abstract

Pseudoclostridium thermosuccinogenes is a thermophilic bacterium capable of producing succinate from lignocellulosic-derived sugars and has the potential to be exploited as a platform organism. However, exploitation of P. thermosuccinogenes has been limited partly due to the genetic inaccessibility and lack of genome engineering tools. In this study, we established the genetic accessibility for P. thermosuccinogenes DSM 5809. By overcoming restriction barriers, transformation efficiencies of 102 CFU/µg plasmid DNA were achieved. To this end, the plasmid DNA was methylated in vivo when transformed into an engineered E. coli HST04 strain expressing three native methylation systems of the thermophile. This protocol was used to introduce a ThermodCas9-based CRISPRi tool targeting the gene encoding malic enzyme in P. thermosuccinogenes, demonstrating the principle of gene silencing. This resulted in 75% downregulation of its expression and had an impact on the strain's fermentation profile. Although the details of the functioning of the restriction modification systems require further study, in vivo methylation can already be applied to improve transformation efficiency of P. thermosuccinogenes. Making use of the ThermodCas9-based CRISPRi, this is the first example demonstrating that genetic engineering in P. thermosuccinogenes is feasible and establishing the way for metabolic engineering of this bacterium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。