Sex-dependent changes in neuroactive steroid concentrations in the rat brain following acute swim stress

急性游泳应激后大鼠脑内神经活性类固醇浓度的性别依赖性变化

阅读:9
作者:Ying Sze, Andrew C Gill, Paula J Brunton

Abstract

Sex differences in hypothalamic-pituitary-adrenal (HPA) axis activity are well established in rodents. In addition to glucocorticoids, stress also stimulates the secretion of progesterone and deoxycorticosterone (DOC) from the adrenal gland. Neuroactive steroid metabolites of these precursors can modulate HPA axis function; however, it is not known whether levels of these steroids differ between male and females following stress. In the present study, we aimed to establish whether neuroactive steroid concentrations in the brain display sex- and/or region-specific differences under basal conditions and following exposure to acute stress. Brains were collected from male and female rats killed under nonstress conditions or following exposure to forced swimming. Liquid chromatography-mass spectrometry was used to quantify eight steroids: corticosterone, DOC, dihydrodeoxycorticosterone (DHDOC), pregnenolone, progesterone, dihydroprogesterone (DHP), allopregnanolone and testosterone in plasma, and in five brain regions (frontal cortex, hypothalamus, hippocampus, amygdala and brainstem). Corticosterone, DOC and progesterone concentrations were significantly greater in the plasma and brain of both sexes following stress; however, the responses in plasma were greater in females compared to males. This sex difference was also observed in the majority of brain regions for DOC and progesterone but not for corticosterone. Despite observing no stress-induced changes in circulating concentrations of pregnenolone, DHDOC or DHP, concentrations were significantly greater in the brain and this effect was more pronounced in females than males. Basal plasma and brain concentrations of allopregnanolone were significantly higher in females; moreover, stress had a greater impact on central allopregnanolone concentrations in females. Stress had no effect on circulating or brain concentrations of testosterone in males. These data indicate the existence of sex and regional differences in the generation of neuroactive steroids in the brain following acute stress, especially for the 5α-reduced steroids, and further suggest a sex-specific expression of steroidogenic enzymes in the brain. Thus, differential neurosteroidogenesis may contribute to sex differences in HPA axis responses to stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。