Achieving Ultrahigh Cycling Stability and Extended Potential Window for Supercapacitors through Asymmetric Combination of Conductive Polymer Nanocomposite and Activated Carbon

通过导电聚合物纳米复合材料与活性炭的不对称组合实现超级电容器的超高循环稳定性和扩展电位窗口

阅读:5
作者:Hajera Gul, Anwar-Ul-Haq Ali Shah, Salma Bilal

Abstract

Conducting polymers and carbon-based materials such as graphene oxide (GO) and activated carbon (AC) are the most promising capacitive materials, though both offer charge storage through different mechanisms. However, their combination can lead to some unusual results, offering improvement in certain properties in comparison with the individual materials. Cycling stability of supercapacitors devices is often a matter of concern, and extensive research is underway to improve this phenomena of supercapacitive devices. Herein, a high-performance asymmetric supercapacitor device was fabricated using graphene oxide-polyaniline (GO@PANI) nanocomposite as positive electrode and activated carbon (AC) as negative electrode. The device showed 142 F g-1 specific capacitance at 1 A g-1 current density with capacitance retention of 73.94% at higher current density (10 A g-1). Most importantly, the device exhibited very high electrochemical cycling stability. It retained 118.6% specific capacitance of the starting value after 10,000 cycles at 3 Ag-1 and with coulombic efficiency of 98.06 %, indicating great potential for practical applications. Very small solution resistance (Rs, 0.640 Ω) and charge transfer resistance (Rct, 0.200 Ω) were observed hinting efficient charge transfer and fast ion diffusion. Due to asymmetric combination, potential window was extended to 1.2 V in aqueous electrolyte, as a result higher energy density (28.5 Wh kg-1) and power density of 2503 W kg-1 were achieved at the current density 1 Ag-1. It also showed an aerial capacitance of 57 mF cm-2 at current 3.2 mA cm-2. At this current density, its energy density was maximum (0.92 mWh cm-2) with power density (10.47 W cm-2).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。